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1 Introduction

In this paper, we show all the proofs of the theorems in the reference paper Exact Mixed-Integer
Programming Approach for Chance-Constrained Multi-Area Reserve Sizing. Please notice that the
title numbers of equations, definitions, lemmas, and theorems are different from the reference paper.
This is an inevitable choice to make this paper as a whole. The Claim 2.1.2 in the reference paper is
identical to the Claim 2.5.2 in this paper. The Theorem 2.3 in the reference paper is equivalent to
the Theorem 2.6 in this paper. Apart from these two proofs that are missing in the reference paper,
we have included all the definitions, lemmas, and theorems in this paper for the reference paper.
Notice that Definition 2.3, Lemma 2.3, and Lemma 2.4 are new in this paper, and they are used to
prove the Claim 2.5.2.

2 Proofs

Definition 2.1 (Connected Vertex Set). For a graph G(V,E), the Connected Vertex Set W(G) is
defined as follows:

W(G) = {S ⊆ V : ∀v, w ∈ S,∃ a path P on G s.t. v, w ∈ V (P ) ⊆ S}, (1)

where V (P ) denotes the set of vertices in the path P .

Definition 2.2 (Maximum Input/Output Flow). For a directed graph G(V,E) where ∀e ∈ E, f(e)
denotes the flow in e and −T−

e ≤ f(e) ≤ T+
e , for all S ⊆ V,E′ ⊆ E, the Maximum Input Flow I(S)

and the Maximum Output Flow O(S) on E′ are defined as follows:

I(S|E′) = Σ
v∈S,w∈Sc:(v,w)∈E′

T−
(v,w) + Σ

v∈S,w∈Sc:(w,v)∈E′
T+
(w,v), (2)

O(S|E′) = Σ
v∈S,w∈Sc:(v,w)∈E′

T+
(v,w) + Σ

v∈S,w∈Sc:(w,v)∈E′
T−
(w,v). (3)

Lemma 2.1. For a graph G(V,E),

I(S1 \ S2|E′) +O(S2 \ S1|E′) ≤ I(S1|E′) +O(S2|E′), ∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the compactness of the proof, without loss of generality, we leave out the conditions
(v, w) ∈ E′ or (w, v) ∈ E′ under the summation sign. We can divide I(S1 \ S2|E′) into two terms:

I(S1 \ S2|E′) = Σ
v∈S1\S2,w∈Sc

1

(T−
(v,w) + T+

(w,v)) + Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (4)

Observe that since S1 \ S2 ⊆ Sc
2, the second term

Σ
v∈S1\S2,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) ≤ Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)). (5)

By changing v and w, we can obtain

Σ
v∈Sc

2 ,w∈S1∩S2

(T−
(v,w) + T+

(w,v)) = Σ
v∈S1∩S2,w∈Sc

2

(T+
(v,w) + T−

(w,v)). (6)
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In a similar way, O(S2 \ S1|E′) can be divided into two terms:

O(S2 \ S1|E′) = Σ
v∈S2\S1,w∈Sc

2

(T+
(v,w) + T−

(w,v)) + Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (7)

Since S2 \ S1 ⊆ Sc
1, the second term

Σ
v∈S2\S1,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) ≤ Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)). (8)

By changing v and w, we can obtain

Σ
v∈Sc

1 ,w∈S1∩S2

(T+
(v,w) + T−

(w,v)) = Σ
v∈S1∩S2,w∈Sc

1

(T−
(v,w) + T+

(w,v)). (9)

Now observe that the sum of the first term of (4) and the right-hand-side of (9) is equal to
I(S1|E′). Likewise, the sum of the first term of (7) and the right-hand-side of (6) is equal to
O(S2|E′). Thus, I(S1 \ S2|E′) +O(S2 \ S1|E′) ≤ I(S1|E′) +O(S2|E′).

Lemma 2.2. For a graph G(V,E) for all S1, S2 ⊆ V,E′ ⊆ E,

O(S1 ∪ S2|E′) +O(S1 ∩ S2|E′) = O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′)

I(S1 ∪ S2|E′) + I(S1 ∩ S2|E′) = I(S1|E′) + I(S2|E′)− Φ(S1, S2|E′)

where
Φ(S1, S2|E′) = Σ

v,w∈(S1\S2)∪(S2\S1):(v,w)∈E′
(T+

(v,w) + T−
(v,w)).

Proof. Since it is almost same, we only show the case of Maximum Output Flow. For the compactness
of the proof, without loss of generality, we leave out the conditions (v, w) ∈ E′ or (w, v) ∈ E′ under
the summation sign. Notice that O(S|E′) is consist of the terms related to T+

(v,w) and those of

T−
(v,w). In this proof, the patterns for T+

(v,w) and T−
(v,w) are exactly same and what is important is

the relationship of summations, so we omit T+
(v,w) and T−

(v,w) on the course of equations. Notice that

the right-hand-side can be written as follows:

O(S1|E′)+O(S2|E′)−Φ(S1, S2|E′) = Σ
v∈S1,w∈Sc

1

+ Σ
v∈S2,w∈Sc

2

− Σ
v∈S1\S2,w∈S2\S1

− Σ
v∈S2\S1,w∈S1\S2

(10)

Since

Σ
v∈S1,w∈Sc

1

= Σ
v∈S1\S2,w∈S2\S1

+ Σ
v∈S1\S2,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(11)

Σ
v∈S2,w∈Sc

2

= Σ
v∈S2\S1,w∈S1\S2

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

(12)

the first terms of (11) and (12) are crossed out with the third and the fourth term of (10). From the
rest of the terms observe that

Σ
v∈S1\S2,w∈(S1∪S2)c

+ Σ
v∈S2\S1,w∈(S1∪S2)c

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∪S2),w∈(S1∪S2)c

(13)

Σ
v∈S1∩S2,w∈S2\S1

+ Σ
v∈S1∩S2,w∈S1\S2

+ Σ
v∈S1∩S2,w∈(S1∪S2)c

= Σ
v∈(S1∩S2),w∈(S1∩S2)c

. (14)

The right-hand-side of (13) is O(S1 ∪S2|E′) and the right-hand-side of (14) is O(S1 ∩S2|E′). Thus,
O(S1 ∪ S2|E′) +O(S1 ∩ S2|E′) = O(S1|E′) +O(S2|E′)− Φ(S1, S2|E′).

Definition 2.3 (Net Output Flow). For a directed graph G(V,E) where ∀e ∈ E, f̂(e) denotes the
flow in e, for all S ⊆ V,E′ ⊆ E, the Net Output Flow on E′, Γ(S|E′) is defined as follows:

Γ(S|E′) = Σ
(v,w)∈E′:v∈S

f̂(v,w) − Σ
(v,w)∈E′:w∈S

f̂(v,w). (15)
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Lemma 2.3. For a graph G(V,E),

Γ(S1|E′)− Γ(S2|E′) = Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′), ∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. For the compactness of the proof, without loss of generality, we leave out the conditions
(v, w) ∈ E′ under the summation sign.

Γ(S1|E′) = Σ
v∈S1\S2

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w) − Σ
w∈S1\S2

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (16)

Γ(S2|E′) = Σ
v∈S2\S1

f̂(v,w) + Σ
v∈S1∩S2

f̂(v,w) − Σ
w∈S2\S1

f̂(v,w) − Σ
w∈S1∩S2

f̂(v,w) (17)

Observe that

Γ(S1|E′)− Γ(S2|E′) = ( Σ
v∈S1\S2

f̂(v,w) − Σ
w∈S1\S2

f̂(v,w))− ( Σ
v∈S2\S1

f̂(v,w) − Σ
w∈S2\S1

f̂(v,w))

= Γ(S1 \ S2|E′)− Γ(S2 \ S1|E′).
(18)

Lemma 2.4. For a graph G(V,E),

Γ(S1 ∪ S2|E′) + Γ(S1 ∩ S2|E′) = Γ(S1|E′) + Γ(S2|E′), ∀S1, S2 ⊆ V,E′ ⊆ E.

Proof. It can be easily shown by the fact that Σ
v∈(S1∪S2)

+ Σ
v∈(S1∩S2)

= Σ
v∈S1

+ Σ
v∈S2

.

Let
F = {(r+, r−, p, f) ∈ R|V |

+ × R|V |
+ × R|V | × R|E| : (19)− (21)},

where

pv + δv = Σ
e=(v,·)∈E

fe − Σ
e=(·,v)∈E

fe, v ∈ V (19)

− r−v ≤ pv ≤ r+v , v ∈ V (20)

− T−
e ≤ fe ≤ T+

e , e ∈ E. (21)

Let
Fp = {(r+, r−, p) ∈ R|V |

+ × R|V |
+ × R|V | : (22)− (23)},

where

− I(S|E) ≤ Σ
v∈S

(pv + δv) ≤ O(S|E), S ∈ W(G) (22)

− r−v ≤ pv ≤ r+v , v ∈ V. (23)

Let
Fr = {(r+, r−) ∈ R|V |

+ × R|V |
+ : (24)− (25)},

where

Σ
v∈S

r−v ≥ Σ
v∈S

δv −O(S|E), S ∈ W(G) (24)

Σ
v∈S

r+v ≥ − Σ
v∈S

δv − I(S|E), S ∈ W(G). (25)

Theorem 2.5. Proj(r+,r−)(F ) = Fr.

Proof. The proof will be based on two steps. First, in Claim 2.5.2, we will show that the projection
of F onto the space of (r+, r−, p) is Fp. Second, in Claim 2.5.1, we will show that the projection of Fp

onto the space of (r+, r−) is Fr. Claim 2.5.2 and Claim 2.5.1 together imply that Proj(r+,r−)(F ) =
Fr.
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Algorithm 1: Finding feasible p̂ to Fp from (r̂+, r̂−) ∈ Fr

Input: G = (V,E), (r̂+, r̂−) ∈ Fr

Output: p̂
Start with an empty set R← ∅;
while R ̸= V do

1. Choose v ∈ V \R such that R ∪ v ⊆ W(G);
2. Fix p̂v satisfying (26) - (28);

− r̂−v ≤ p̂v ≤ r̂+v (26)

p̂v ≥ − Σ
w∈R∩S

p̂w − Σ
w∈S\{R∪v}

r̂+w − Σ
w∈S

δw − I(S|E), S ∈ W(G) : v ∈ S (27)

p̂v ≤ − Σ
w∈R∩S

p̂w + Σ
w∈S\{R∪v}

r̂−w − Σ
w∈S

δw +O(S|E), S ∈ W(G) : v ∈ S (28)

3. R← R ∪ v;

end

Claim 2.5.1. Proj(r+,r−)(Fp) = Fr.

Proof. First, we show that Proj(r+,r−)(Fp) ⊆ Fr. From (23),

− Σ
v∈S

r−v ≤ Σ
v∈S

pv ≤ Σ
v∈S

r+v . (29)

Now it is easy to see that (29) and (22) implies (24) and (25).

Second, we show that Fr ⊆ Proj(r+,r−)(Fp). It suffices to show that for all (r̂+, r̂−) ∈ Fr, there
exists p̂ such that (r̂+, r̂−, p̂) ∈ Fp. We show that we can find such p̂ from Algorithm 1 and it always
exists. If it exists, it is easy to show that p̂ satisfies (23) from (26). Also, observe that p̂ satisfies
(22) because for all S ∈ W(G), on the course of the while statement, there exists v,R such that
S ̸⊆ R,S ⊆ R ∪ v then (27) and (28) for S with such v,R become (22).

Now, we show the existence of such p̂ in Algorithm 1. We use mathematical induction. Denote
Ri and vi as the node sets and the nodes we get from the Algorithm 1 as it iterates under the
while statement. For the first step we consider the case where R1 = ∅. The lower bound of (27)
≤ the upper bound of (26) is implied by (25) and the upper bound of (28) ≥ the lower bound of
(26) is implied by (24). For showing why the lower bound of (27) ≤ the upper bound of (28), pick
S1, S2 ∈ {S ∈ W(G) : v1 ∈ S}. From (24) for S2 \ S1 and (25) for S1 \ S2

1 using Lemma 2.1,

Σ
w∈S1\S2

r+w + Σ
w∈S2\S1

r−w ≥ − Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1 \ S2|E)−O(S2 \ S1|E)

≥ − Σ
w∈S1\S2

δw + Σ
w∈S2\S1

δw − I(S1|E)−O(S2|E).
(30)

Since Σ
w∈(S1∩S2)\v1

(r+w + r−w ) ≥ 0, (30) implies

Σ
w∈S1\v1

r+w + Σ
w∈S2\v1

r−w ≥ − Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (31)

which is equivalent to the lower bound of (27) for S1 ≤ the upper bound of (28) for S2. Thus, p̂v1
satisfying (26) - (28) exists for the case where R1 = ∅.

1It is possible that S1 \ S2 ̸∈ W(G) or S2 \ S1 ̸∈ W(G), but in this case there exists disjoint SA, SB ∈ W(G) such
that SA ∪ SB = S1 \ S2 or SA ∪ SB = S2 \ S1, and we can get the same results as (30) by summing up (24) or (25)
for SA and that for SB .
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For the next step of mathematical induction, assume that for i ≥ 1, there exists p̂vk for 1 ≤ k ≤ i
satisfying (26) - (28). For Ri+1 = Ri∪vi and vi+1 ∈ V \Ri+1, our goal is to show that all the possible
combinations of the upper bounds and the lower bounds from (26) - (28) can be implied by other
inequalities so that we can show that p̂vi+1

exists. First, we show it for the combinations of upper
bounds and lower bounds between (26) and (27) - (28). Here, we show one out of the two cases: the
lower bound of (27) ≤ the upper bound of (26). The other case can be shown in a similar fashion.
The set W(G) can be divided into two cases : i) Ri+1 ∩ S = ∅ and ii) Ri+1 ∩ S ̸= ∅. For the case i),

Σ
w∈Ri+1∩S

p̂w = 0 and Σ
w∈S\{Ri+1∪vi+1}

r̂+w = Σ
w∈S\vi+1

r̂+w , so (25) implies the lower bound of (27) ≤ the

upper bound of (26). For the case ii), from the set {v : v ∈ Ri+1∩S}, pick the node with the largest
index l. Observe that Σ

w∈Ri+1∩S
p̂w = Σ

w∈Rl∩S
p̂w + p̂vl and Σ

w∈S\Ri+1

r̂+w = Σ
w∈S\{Rl∪vl}

r̂+w . This can be

proved by contradiction. Assume that it is not true. Then ∃vm such that m ̸= l, vm ∈ Ri+1, vm ̸∈ Rl,
and vm ∈ S. This contradicts the fact that l is the largest index. Thus, (27) with Rl and vl implies
the lower bound of (27) ≤ the upper bound of (26).

For showing why the lower bound of (27) ≤ the upper bound of (28), pick S1, S2 ∈ {S ∈ W(G) :
v ∈ S}. We have four different cases to show : i) Ri+1 ∩ S1 = ∅, Ri+1 ∩ S2 = ∅, ii) Ri+1 ∩ S1 ̸= ∅,
Ri+1∩S2 = ∅, iii) Ri+1∩S1 = ∅, Ri+1∩S2 ̸= ∅, iv) Ri+1∩S1 ̸= ∅, Ri+1∩S2 ̸= ∅. Since it is similar to
prove another cases, here we show for the case ii) where Ri+1 ∩S1 ̸= ∅, Ri+1 ∩S2 = ∅. From the set
{v : v ∈ Ri+1∩(S1\S2)}, pick the node with the largest index l. Similar to what we have shown above,
observe that Σ

w∈Ri+1∩(S1\S2)
p̂w = Σ

w∈Rl∩(S1\S2)
p̂w + p̂vl and Σ

w∈(S1\S2)\Ri+1

r̂+w = Σ
w∈(S1\S2)\{Rl∪vl}

r̂+w .

From (27) for S1 \S2 with Rl, vl and (24) for S2 \S1 using Lemma 2.1, following the similar process
in (30) and (31) we get the inequality,

Σ
w∈Ri+1∩S1

p̂w + Σ
w∈S1\Ri+1

r+w + Σ
w∈S2

r−w ≥ − Σ
w∈S1

δw + Σ
w∈S2

δw − I(S1|E)−O(S2|E), (32)

which is equivalent to the lower bound of (27) for S1 ≤ the upper bound of (28) for S2.

Thus, p̂vi+1 satisfying (26) - (28) exists and it proves the existence of p̂.

Claim 2.5.2. Proj(r+,r−,p)(F ) = Fp.

Proof. First, we show that Proj(r+,r−,p)(F ) ⊆ Fp. Notice that (20) and (23) are identical. So, it
suffices to show that (19) and (21) implies (22). From (19),

Σ
v∈S

(pv + δv) = Σ
v∈S,w∈Sc

f(v,w) − Σ
v∈S,w∈Sc

f(w,v), S ∈ W(G). (38)

Now, it is easy to see that (38) and (21) implies (22).

Second, we show that Fp ⊆ Proj(r+,r−,p)(F ). It suffices to show that for all (r̂+, r̂−, p̂) ∈ Fp,

there exists f̂ such that (r̂+, r̂−, p̂, f̂) ∈ F. We show that we can find such f̂ from Algorithm 2 and

it always exists. If it exists, it is easy to show that f̂ satisfies (21) from (33). Also, observe that f̂
satisfies (19) from (34) - (37). For all v ∈ V , let E(v) = {e ∈ E : e = (v, ·) ∪ e = (·, v)}. On the
course of Algorithm 2, when we pick (v, w) such that E(v) ⊂ Q ∪ (v, w), with such Q and S = {v},
(34) and (35) become (19). Likewise, when we pick (w, v) such that E(v) ⊂ Q∪ (w, v), with such Q
and S = {v}, (36) and (37) become (19).

Now, we show the existence of such f̂ in Algorithm 2. We use mathematical induction. Denote
Qi and (vi, wi) as the edge sets and the edges we get from the Algorithm 2 as it iterates under the
while statement. For the first step we consider the case where Q1 = ∅. Then, Γ(S|Q1) = 0 for all
S ∈ W(G). We want to show that (22) implies all the possible combinations of upper bounds and
lower bounds among (33) - (37). First we show for the combinations between (33) and (34) - (37).
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Algorithm 2: Finding feasible f̂ to F from (r̂+, r̂−, p̂) ∈ Fp

Input: G = (V,E), (r̂+, r̂−, p̂) ∈ Fp

Output: f̂
Start with an empty set Q← ∅;
while Q ̸= E do

1. Choose (v, w) ∈ E \Q ;

2. Fix f̂(v,w) satisfying (33) - (37);

− T−
(v,w) ≤ f̂(v,w) ≤ T+

(v,w) (33)

For all S ∈ W(G) : v ∈ S,w ̸∈ S

f̂(v,w) ≥ Σ
u∈S

(p̂u + δu)− Γ(S|Q)−O(S|E) +O(S|Q ∪ (v, w)) (34)

f̂(v,w) ≤ Σ
u∈S

(p̂u + δu)− Γ(S|Q) + I(S|E)− I(S|Q ∪ (v, w)) (35)

For all S ∈ W(G) : v ̸∈ S,w ∈ S

f̂(v,w) ≥ − Σ
u∈S

(p̂u + δu) + Γ(S|Q)− I(S|E) + I(S|Q ∪ (v, w)) (36)

f̂(v,w) ≤ − Σ
u∈S

(p̂u + δu) + Γ(S|Q) +O(S|E)−O(S|Q ∪ (v, w)) (37)

3. Q← Q ∪ (v, w);

end

As an example, in (34), O(S|Q1∪(v1, w1)) = T+
(v1,w1)

. So, (22) implies the upper bound of (33) ≥ the

lower bound of (34). In a similar way, we can show that (22) implies all the possible combinations of
upper bounds and lower bounds between (33) and (35) - (37). Next, we still need to show why the
lower bound of (34) ≤ the upper bound of (35), and for the case of (36) and (37). Since the pattern
is similar, we show that of (34) and (35) as an example. Pick S1, S2 ∈ {S ∈ W(G) : v1 ∈ S,w1 ̸∈ S}.
Notice the equation (39) holds because v1 ∈ S1 ∩ S2, which implies v1 ̸∈ S1 \ S2 and v1 ̸∈ S2 \ S1.

O(S1 \ S2|E) + I(S2 \ S1|E) = O(S1 \ S2|E \ (v1, w1)) + I(S2 \ S1|E \ (v1, w1)) (39)

From (22) for S1 \ S2 and S2 \ S1 using the equation (39) and Lemma 2.1,

0 ≤ O(S1 \ S2|E) + I(S2 \ S1|E)− Σ
u∈S1\S2

(p̂u + δu) + Σ
u∈S2\S1

(p̂u + δu)

= O(S1 \ S2|E \ (v1, w1)) + I(S2 \ S1|E \ (v1, w1))− Σ
u∈S1

(p̂u + δu) + Σ
u∈S2

(p̂u + δu)

≤ O(S1|E \ (v1, w1)) + I(S2|E \ (v1, w1))− Σ
u∈S1

(p̂u + δu) + Σ
u∈S2

(p̂u + δu),

(40)

which is equivalent to the lower bound of (34) for S1 ≤ the upper bound of (35) for S2. Now, the
remaining combinations are the lower bound of (34) ≤ the upper bound of (37) and the case of
(35) and (36). Here, we show that of (34) and (37). Pick S1 ∈ {S ∈ W(G) : v1 ∈ S,w1 ̸∈ S} and
S2 ∈ {S ∈ W(G) : v1 ̸∈ S,w1 ∈ S}. Notice that (S1 ∪ S2) ∈ W(G) because (v1, w1) connects S1 and
S2, and (S1 ∩ S2) ∈ W(G). From (22) for (S1 ∪ S2) and (S1 ∩ S2) using Lemma 2.2,

Σ
u∈S1

(p̂u + δu) + Σ
u∈S2

(p̂u + δu) ≤ O(S1 ∪ S2|E) +O(S1 ∩ S2|E)

≤ O(S1|E) +O(S2|E)− T+
(v1,w1)

− T−
(v1,w1)

,
(41)

which is equivalent to the lower bound of (34) for S1 ≤ the upper bound of (37) for S2.
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For the next step of mathematical induction, assume that for i ≥ 1, there exists f̂(vk,wk) for 1 ≤ k ≤ i
satisfying (33) - (37). For Qi+1 = Qi ∪ (vi, wi) and (vi+1, wi+1) ∈ E \ Qi+1, our goal is to show
that all the possible combinations of the upper bounds and the lower bounds from (33) - (37) can

be implied by other inequalities so that we can show that f̂(vi+1,wi+1) exists. First we show for the
combinations of upper bounds and lower bounds between (33) and (34) - (37). Here, we show one
out of the four cases: the upper bound of (33) ≥ the lower bound of (34). The other three cases can
be shown in a similar fashion. The set {S ∈ W(G) : vi+1 ∈ S,wi+1 ̸∈ S} can be divided into two
cases: i) Γ(S|Qi+1) = 0, and ii) Γ(S|Qi+1) ̸= 0.

For the case Γ(S|Qi+1) = 0, O(S|Qi+1 ∪ (vi+1, wi+1)) = T+
(vi+1,wi+1)

. So, (22) implies the up-

per bound of (33) ≥ the lower bound of (34). For the case Γ(S|Qi+1) ̸= 0, it is equivalent
to say that the set {(vk, wk) : k ≤ i such that vk ∈ S ∩ V (Qi+1), wk ∈ V (Qi+1) \ S or wk ∈
S ∩ V (Qi+1), vk ∈ V (Qi+1) \ S} is nonempty. Pick the edge with the largest index l from this set.

If vl ∈ S ∩ V (Qi+1), wl ∈ V (Qi+1) \ S, then Γ(S|Ql) + f̂(vl,wl) = Γ(S|Qi+1) and O(S|Qi+1) =
O(S|Ql ∪ (vl, wl)). This can be proved by contradiction. Assume that it is not true. Then
∃(vm, wm) such that m ̸= l, (vm, wm) ∈ Qi+1, (vm, wm) ̸∈ Ql and vm ∈ S,wm ∈ V (Qi+1) \ S.
This contradicts the fact that l is the largest index. Observe that O(S|Qi+1 ∪ (vi+1, wi+1)) =
O(S|Qi+1) + T+

(vi+1,wi+1)
= O(S|Ql ∪ (vl, wl)) + T+

(vi+1,wi+1)
. Thus, (34) with Ql and (vl, wl) implies

the upper bound of (33) ≥ the lower bound of (34). If wl ∈ S ∩ V (Qi+1), vl ∈ V (Qi+1) \ S, then
Γ(S|Ql) − f̂(vl,wl) = Γ(S|Qi+1) and O(S|Qi+1) = O(S|Ql ∪ (vl, wl)). Similarly, (37) with Ql and
(vl, wl) implies the upper bound of (33) ≥ the lower bound of (34).

Next, we still need to show that the lower bound of (34) ≤ the upper bound of (35) and for
the case of (36) and (37). Since the way is similar, we show the case of (34) and (35) as an
example. Pick S1, S2 ∈ {S ∈ W(G) : vi+1 ∈ S,wi+1 ̸∈ S}. There are four cases to show: i)
Γ(S1 \ S2|Qi+1) = 0,Γ(S2 \ S1|Qi+1) = 0, ii) Γ(S1 \ S2|Qi+1) ̸= 0,Γ(S2 \ S1|Qi+1) = 0, iii)
Γ(S1 \ S2|Qi+1) = 0,Γ(S2 \ S1|Qi+1) ̸= 0, iv) Γ(S1 \ S2|Qi+1) ̸= 0,Γ(S2 \ S1|Qi+1) ̸= 0. Here,
we show for the case ii) as an example since another cases are similar to that. As mentioned
above, Γ(S1 \ S2|Qi+1) ̸= 0 is equivalent to say that the set {(vk, wk) : k ≤ i such that vk ∈
(S1 \S2)∩V (Qi+1), wk ∈ V (Qi+1)\(S1 \S2) or wk ∈ (S1 \S2)∩V (Qi+1), vk ∈ V (Qi+1)\(S1 \S2)} is
nonempty. From this set, pick the edge with the largest index l. Without loss of generality, we assume
that vl ∈ (S1\S2)∩V (Qi+1), wl ∈ V (Qi+1)\(S1\S2). Then, Γ(S1\S2|Ql)+f̂(vl,wl) = Γ(S1\S2|Qi+1)
and O(S1 \ S2|Qi+1) = O(S1 \ S2|Ql ∪ (vl, wl)). Additionally, this case is further divided into two
sub-cases : ii-i) Γ(S2|Qi+1) = 0, and ii-ii) Γ(S2|Qi+1) ̸= 0.

For the case ii-i), because of the Lemma 2.3, Γ(S1 \ S2|Qi+1) = Γ(S1|Qi+1). From (34) for S1 \ S2

with Ql, (vl, wl) and (22) for S2 \ S1,

0 ≤ Γ(S1 \S2|Qi+1)+O(S1 \S2|E \Qi+1)+I(S2 \S1|E)− Σ
u∈S1\S2

(p̂u+δu)+ Σ
u∈S2\S1

(p̂u+δu). (42)

Notice that the equations (43) hold because vi+1 ̸∈ (S1\S2),vi+1 ̸∈ (S2\S1), and Γ(S2\S1|Qi+1) = 0.

O(S1 \ S2|E \Qi+1) = O(S1 \ S2|E \ (Qi+1 ∪ (vi+1, wi+1)))

I(S2 \ S1|E) = I(S2 \ S1|E \ (Qi+1 ∪ (vi+1, wi+1)))
(43)

Using the equations (43), Lemma 2.1 and the fact that Γ(S1 \ S2|Qi+1) = Γ(S1|Qi+1), (42) implies
the lower bound of (34) for S1 ≤ the upper bound of (35) for S2. For the case ii-ii), because of the
Lemma 2.3, Γ(S1 \ S2|Qi+1) = Γ(S1|Qi+1)− Γ(S2|Qi+1). Similar to the case ii-i), we can show that
(34) for S1 \ S2 with Ql, (vl, wl) and (22) for S2 \ S1 imply the lower bound of (34) for S1 ≤ the
upper bound of (35) for S2.

Lastly, we need to show that the lower bound of (34) ≤ the upper bound of (37) and the case
of (35) and (36). Since the pattern is similar, we show the case of (34) and (37) as an example. Pick
S1 ∈ {S ∈ W(G) : vi+1 ∈ S,wi+1 ̸∈ S} and S2 ∈ {S ∈ W(G) : vi+1 ̸∈ S,wi+1 ∈ S}. There are four
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cases to show: i) Γ(S1∪S2|Qi+1) = 0,Γ(S1∩S2|Qi+1) = 0, ii) Γ(S1∪S2|Qi+1) ̸= 0,Γ(S1∩S2|Qi+1) =
0, iii) Γ(S1 ∪ S2|Qi+1) = 0,Γ(S1 ∩ S2|Qi+1) ̸= 0, iv) Γ(S1 ∪ S2|Qi+1) ̸= 0,Γ(S1 ∩ S2|Qi+1) ̸= 0.
Here, we show for the case ii) as an example since another cases are similar to that. As men-
tioned above, Γ(S1 ∪ S2|Qi+1) ̸= 0 is equivalent to say that the set {(vk, wk) : k ≤ i such that vk ∈
(S1∪S2)∩V (Qi+1), wk ∈ V (Qi+1)\(S1∪S2) or wk ∈ (S1∪S2)∩V (Qi+1), vk ∈ V (Qi+1)\(S1∪S2)} is
nonempty. From this set, pick the edge with the largest index l. Without loss of generality, we assume
that vl ∈ (S1∪S2)∩V (Qi+1), wl ∈ V (Qi+1)\(S1∪S2). Then, Γ(S1∪S2|Ql)+f̂(vl,wl) = Γ(S1∪S2|Qi+1)
and O(S1 ∪ S2|Qi+1) = O(S1 ∪ S2|Ql ∪ (vl, wl)). From (34) for (S1 ∪ S2) with Ql, (vl, wl) and (22)
for (S1 ∩ S2),

Σ
u∈S1

(p̂u + δu) + Σ
u∈S2

(p̂u + δu) ≤ Γ(S1 ∪ S2|Qi+1) +O(S1 ∪ S2|E \Qi+1) +O(S1 ∩ S2|E). (44)

Notice that the Lemma 2.4 and the fact that Γ(S1 ∩ S2|Qi+1) = 0 imply Γ(S1 ∪ S2|Qi+1) =
Γ(S1|Qi+1)+Γ(S2|Qi+1). Since vi+1, wi+1 ∈ (S1∪S2), vi+1, wi+1 ̸∈ (S1∩S2), and Γ(S1∩S2|Qi+1) =
0,

O(S1 ∪ S2|E \Qi+1) = O(S1 ∪ S2|E \ (Qi+1 ∪ (vi+1, wi+1)))

O(S1 ∩ S2|E) = O(S1 ∩ S2|E \ (Qi+1 ∪ (vi+1, wi+1))).
(45)

Using the equations (45), Lemma 2.2, and the fact that Γ(S1∪S2|Qi+1) = Γ(S1|Qi+1)+Γ(S2|Qi+1),
(44) implies the lower bound of (34) for S1 ≤ the upper bound of (37) for S2.

Thus, f̂(vi+1,wi+1) satisfying (33) - (37) exists and it proves the existence of f̂ .

Theorem 2.6. Fr is a minimal representation on the space of (r+, r−).

Proof. Since the proof for the set of inequalities (24), is similar to the case for (25), we show here
the case for (24). In order to show that (24) is a minimal representation on the space of r−, in order
to show the contradiction in the end, first let us assume that there exists a set S′ ∈ W(G) such
that there exist mutually different sets S′

1, . . . , S
′
n ∈ W(G) by which the inequality constructed of

the form (24) dominates the inequality for the set S′. In a mathematical expression, it means that
there exist coefficients α1, . . . , αn ≥ 0 that satisfies the following conditions (46) and (47).

α1 Σ
v∈S′

1

r−v + · · ·+ αn Σ
v∈S′

n

r−v ≤ Σ
v∈S′

r−v (46)

α1 Σ
v∈S′

1

δv + · · ·+ αn Σ
v∈S′

n

δv − α1O(S′
1|E)− · · · − αnO(S′

n|E) ≥ Σ
v∈S′

δv −O(S′|E) (47)

In order to satisfy the inequalities (46) and (47) for all possible values of r−v and δv, Σ
i:v∈S′

i

αi = 1

for all v ∈ S′ and Σ
i:v∈S′

i

αi = 0 for all v ∈ V \S′. This implies that for all i ∈ {1, . . . , n}, S′
i ⊆ S′ and⋃n

i=1 S
′
i = S′. Notice that the left-hand side and the right-hand side for of (46) are equal, and (47)

becomes
O(S′|E) ≥ α1O(S′

1|E) + · · ·+ αnO(S′
n|E). (48)

Since the right-hand side of (48)

α1O(S′
1|E) + · · ·+ αnO(S′

n|E) = Σ
i:v∈S′

i

αi · ( Σ
v∈S′,w∈(S′)c

T+
(v,w) + Σ

v∈S′,w∈(S′)c
T−
(w,v)) + Õ

= O(S′|E) + Õ,

where Õ =
n

Σ
i=1

n

Σ
j=1

αi( Σ
v∈S′

i,w∈(S′
i)

c∩Sj

T+
(v,w) + Σ

v∈S′
i,w∈(S′

i)
c∩Sj

T−
(w,v)) > 0, it contradicts the initial

assumption.
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